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ABSTRACT: The moduli space of ¢ = 1 conformal field theories in two dimensions has a
multicritical point, where a circle theory is equivalent to an orbifold theory. We analyse all
the conformal branes in both descriptions of this theory, and find convincing evidence that
the full brane spectrum coincides. This shows that the equivalence of the two descriptions
at this multicritical point extends to the boundary sector. We also perform the analogous
analysis for one of the multicritical points of the N' = 1 superconformal field theories at ¢ =
%. Again the brane spectra are identical for both descriptions, however the identification
is more subtle.
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1. Introduction

Moduli spaces of two-dimensional conformal field theories (CFTs) often contain multicritical
points, where different lines (or hypersurfaces) of theories, generated by a set of marginal
operators, intersection These points are quite interesting as they admit several equivalent,
but superficially different, descriptions. More precisely, each formulation of the multicritical
point has the same set of primary fields (w.r.t. the chiral algebra of the model), whose
operator product expansions are given by the same structure constants. However, the
different formulations typically have different spacetime interpretations. For example, for
the case of the bosonic CFT at ¢ = 1, the circle theory at twice the self-dual radius is
equivalent to the Zg orbifold of the self-dual circle theory [fl, .

A natural question that arises in this context is whether these seemingly different
descriptions of the same bulk CFT admit the same set of boundary conditions and boundary
operators when defined on surfaces with boundaries, i.e. the same D-branes and open string
sectors in the string theory language. As the D-branes are non-perturbative objects in
space-time, they can be thought of as refined probes compared to fundamental strings [E]
They could therefore uncover unexpected distinctions between the different descriptions of
the multicritical points.



One approach to the construction of D-branes is in terms of boundary states that lie
in a suitable completion of the closed string spectrum. These states are certain linear
combinations of the Ishibashi states [[f] that have to satisfy a number of consistency condi-
tions [f, f]. This construction can be performed purely in terms of the closed string theory,
and thus will be the same for the different descriptions of a given multicritical point. How-
ever, a priori, it is not guaranteed that only one set of consistent boundary states exists
for a given closed string theory, and thus the different descriptions of a multicritical point
may have different D-brane spectra.! Indeed, each description of the multicritical point
has a specific space-time interpretation, and thus comes with a certain set of ‘canonical’
D-branes: for example, the circle theory is described by an action and it implies that the
theory must have Dirichlet and Neumann branes (since these can be defined in terms of the
action); similarly, the orbifold of the circle theory contains always the orbifold invariant
combinations of the branes of the circle theory, etc. Since the various D-branes of a theory
must be mutually consistent (and since one can determine the open string moduli from
the open string spectra), these ‘canonical’” D-branes typically determine the full D-brane
spectrum of the bulk theory uniquely. It is then an interesting question to ask whether
these D-brane spectra agree for the different descriptions of a multicritical point.

The multicritical points are also special since they have additional marginal operators
(relative to the marginal operators that exist at a generic point on each line) that allow
one to move along the other branch. According to the general analysis of boundary defor-
mations [§] one may then expect that there is a similar enhancement of the brane moduli
space. However, in general the analysis is more complicated since the brane moduli space
may also be bigger than what one would expect from the (preserved) symmetries of the
bulk theory [

In this paper we shall analyse the complete D-brane spectra for the different descrip-
tions of various multicritical points. We shall concentrate on those cases where we have full
control of the bulk and brane moduli spaces of the different theories. Besides the minimal
models (that do not admit marginal deformations) the only examples known so far are free
theories of bosons and fermions with central charge and (local) superconformal symmetry
(c=1,N=0), (c=2 N=1)and (c=3, N=2) [[d-[[J]. The first two cases are more
interesting, as both the bulk and brane moduli spaces are quite rich. In both cases, the bulk
moduli space has multicritical points (one for N' = 0 and five for A/ = 1), and the brane
moduli space has components that are described by discrete quotients of SU(2), that exists
only for particular discrete values of the compactification radius. It was found in [I0—[Z]
that, on top of the usual Dirichlet and Neumann branes, this accounts for a complete set
of boundary states. (For certain radii, the Dirichlet or Neumann branes may be part of
the continuous component. Note also that these boundary conditions all define unitary
open string spectra; more general non-unitary boundary conditions are parametrised by
elements in SL(2,C).)

In this paper we work out the complete dictionary between the full brane moduli

!For D-branes that preserve the full rational symmetry of a rational conformal field theory it was only
recently shown that this cannot happen [ﬂ], but in the non-rational case (that shall concern us here) the
situation is unclear.



spaces in the (¢ =1, N'=0) model at the multicritical point, where the circle and the
orbifold lines intersect [[f].2 In the (c = %, N =1) theory, all but one multicritical point
have rather uninteresting brane moduli spaces as they do not contain many superconformal
boundary states beyond the usual Dirichlet and Neumann branes. We will therefore focus
on the multicritical point, where the circle theory and the super-orbifold theory become
equivalent [I4]. For both multicritical points we shall find that the D-brane spectra of the
two descriptions agree; in the superconformal case however a number of intricate subtleties
arise that we explain in detail.

The plan of the paper is as follows. Section [ is devoted to the analysis of the ¢ = 1
models, with a review of the necessary material. In section [| we consider the ¢ = 1 (c = %)
theories. Finally, section 4 contains our conclusions.

2. The c=1 multicritical point

The moduli space of ¢ = 1 conformal field theories is well known [J. First of all there is
the family of models corresponding to a free real boson X(z, z) at radius R, the circle line.
This model has a U(1) symmetry that is enhanced to an su(2); xsu(2); affine algebra at the
self-dual radius R = %.3 Secondly, the moduli space contains a line of theories that are
obtained by the Zs orbifold Z : X +— —X from the circle theory; this family of theories is
usually called the orbifold line. Finally, the moduli space contains isolated points obtained
by orbifolding the circle theory at the self-dual radius by the tetrahedral, octohedral and
icosahedral discrete subgroups of SU(2). They play no role in our discussion. (Branes for
these theories have been constructed in [[[J].)

The circle and orbifold lines intersect for Reire = V2 and Ry, = % In fact, the
circle theory at twice the self-dual radius is also an orbifold (that is sometimes denoted
by SU(2)/Cz), and it is not difficult to show that it is in fact equivalent to the above Zs
orbifold (that is sometimes denoted by SU(2)/D;) [B.

2.1 Boundary states of the circle line: a reminder

We first review the construction of the boundary states on the circle line following [[[J-[Z].
For a generic radius R, the brane moduli space is rather simple: it consists of standard
Dirichlet and Neumann branes that preserve the U(1) chiral symmetry of the model, each
parametrised by a U(1) moduli (the position of the brane and the Wilson line, respec-
tively). In addition there is a continuous family of branes that only couple to the vacuum
representation of the U(1) theory.

For radii of the form R = Niﬁ’ with M and N coprime, the situation is more in-
teresting [[]: in addition to the Neumann and Dirichlet branes there are additional con-
formal branes preserving only the Virasoro algebra that are parametrised by elements in
SU(2)/Zps x Zy. Their origin can be understood from two different points of view. First,

one can think of the theory at radius R = N%\/i as a Zjy; x Zpy orbifold of the self-dual

2Previous work in this direction has been done in @ Following [@]7 the relevant boundary states are
much more explicitly known, and our analysis can therefore be more complete.
3As in most of the literature on this subject, we work in the units where o/ = 1/2.



circle theory, where Zy; (Zy) acts via momentum (winding) shifts [[g].%

By taking orb-
ifold invariant combinations, the conformal branes of the self-dual circle theory (that are
parametrised by SU(2)) then lead to the above moduli space of conformal branes.
Secondly, we can classify all conformal Ishibashi states, and then construct the corre-
sponding boundary states from them as in [[[]]. To explain this in more detail we note that
if the radius of the circle is R = Ni\/i’ some of the 1(1) representations decompose into
infinitely many Virasoro representations. This happens whenever the conformal weight of a
U(1) primary is of the form A = r?, r € N/2 (i.e. when the U(1) representation has charge
q= \/57’), and the complete decomposition into Virasoro irreducible representations is of

the form -
v = v, 2
=0

According to Cardy’s analysis [fi] to each of these representations one can associate an
Ishibashi state that is a solution of the gluing condition T'(z) = T(Z) on the real axis.
In this way one obtains Virasoro Ishibashi states |j,m,m}), where the quantum number
j € N/2 denotes the irreducible Virasoro representation of conformal weight A = j2,
while m, m (with j —m and j — m integer, |m|,|m| < j) parametrise the G(1)r, x a(1)r
representations in which this Virasoro Ishibashi state appears [, [1, []. Depending on
the specific choice of the radius, there are certain selection rules which the m and m have
to satisfy.

Let us now specialise the discussion to the case (M = 2, N = 1), the multicritical
point. From the point of view of the circle line it corresponds to a compactification at
radius R = \/5, i.e. twice the self-dual radius. It is obtained as a Zs winding shift orbifold
of the self-dual point, X ~ X+7/v/2. The left and right conformal weights of the (1) x (1)
primaries read

A:<g+w)2zm2, Az(ﬁ—wfz’z, (2.2)

where n (w) denotes the momentum (winding) number. Note that the theory possesses
a pair of marginal operators with (n = 0,w = +1); a certain linear combination of these
states is the marginal operator that allows one to move along the orbifold line.

Let us discuss the boundary states of this theory. As for any radius, there are standard
Dirichlet and Neumann branes. The Dirichlet branes involve the Dirichlet Ishibashi states
|(n,0)) built on momentum primaries with quantum numbers (n,0) , while the Neumann
Ishibashi states |(0,w)) arise in the winding sectors (0, w). In addition we have the Virasoro
Ishibashi states |j, m,m) that come from the degenerate (1) representations. At R = /2,
the relevant constraint on m and m is simply

m—m=0 mod 2. (2.3)

We can think of this constraint as coming from an orbifold action, as the circle theory at
R = /2 is the Cq orbifold of the self-dual circle theory. In terms of the SU(2) description,

4 Alternatively, it can be viewed as the orbifold of the SU(2) level k = 1 theory by Car x Cn, where the
Cur (Cn) orbifold acts vectorially (axially).



the orbifold acts as g — 03903 = Ads,g. Thus the conformal branes of the circle theory at
R = /2 are of the form [[[]

1 . . . 3
lgene =21 S 5 [Djm,m(g) + D}y (Adoy g) | |7, m,m) (24)

Jimim

where Dfmm(g) is the SU(2) matrix element of ¢ in the j-representation. Obviously ¢g and
Ad,, g describe the same boundary state, and thus the moduli space of these branes is
SU(2)/Zy.°

For off-diagonal group elements, i.e. group elements of the form g = i01€3?, the
resulting brane is in fact a usual Neumann brane with Wilson line Z9 = ¢/+/2 (that only
involves the Ishibashi states |(0,w))). On the other hand, for diagonal group elements
g = 3% with @ € [0,27), the above brane is not fundamental, but rather describes the
superposition of two Dirichlet branes at opposite points on the circle. One way to see
this is to note that the condition on m and 7 in (R.9) to be half-integer implies that only
Ishibashi states with even n appear in the boundary state (@) — the superposition of two
Dirichlet branes at opposite points on the circle projects out the odd momentum states and
only couples to even momentum states, see for example (R.§) below. The fact that these
branes are not fundamental is also natural from a standard orbifold point of view. The
branes (B.4) are the usual regular branes of the orbifold SU(2)/Cy. As in other examples [[[
such branes can be resolved into fractional branes whenever they sit on a fixed point of
the orbifold. Since the group action is g — Ad,, g, the fixed point set consists just of the
diagonal SU(2) matrices. If g is diagonal, the corresponding brane can be resolved into a
pair of fundamental Dirichlet branes, whose boundary states include both even and odd
momentum Ishibashi states

ID;6) =274 3" e |(n, 0)) . (2.5)

nel

To summarise, the single brane moduli space is made of the quotient SU(2)/Co with the

circle g = €739

removed, together with a disconnected U(1) component that describes
the single Dirichlet brane moduli space. It is convenient to parametrise the SU(2) group
elements in terms of Euler angles®

53(0+0) piorv , P (0—0) (2.6)

g=e€

Then the Cs orbifold acts as ¢ — ¢ + m. The fixed point set of this orbifold is ¢ = 0, i.e.
the circle spanned by @ € [0,27). Using the embedding of the three-sphere in C?

21 = costpe'? 29 = sine e'? (2.7)

®Note that T-duality acts on the boundary states, and so on the brane moduli space, as g — gio;. One
obtains the moduli space of the T-dual theory, at radius R= 1/2v3.

SWith this convention the Cartan-Weyl metric is ds® = —%Tr(gfldg gildg) = do? + cos?y dh? +
sin? 1 d¢?.
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Figure 1: Two sections of the brane moduli space of the circle theory, with the Dirichlet circle
added. Antipodal points in the zo-plane are identified.

one gets the representation of the moduli space of figure 1.7 The fixed point set of the
orbifold should be removed from the one-brane moduli space. Instead one has a separate
component of the moduli space, isomorphic to U(1), describing a single Dirichlet brane
sitting on the circle at = /v/2 with 6 € [0, 47).

Finally, it is interesting to notice that the Dirichlet branes are not sensitive to the
underlying SU(2) symmetry of the theory, as their moduli space describes a disconnected
U(1) component of the full brane moduli space.

Comments on D-brane moduli space and target space geometry. One may ask
whether there is any interesting relation between the moduli space of D-branes, and the
target space geometry. In particular, one may expect that the moduli space of the DO-
brane describes a ‘quantum version’ of the target space geometry. However, an immediate
problem with this idea is that it is a priori not clear how to characterise the DO-branes
(among all conformal branes, say). Typically, the full moduli space of conformal branes
may contain different connected components, and one may wonder whether all of them lead
to the same geometric interpretation, or whether different brane probes may see ‘different
geometries’.

For example, in standard torus compactifications, the brane moduli space contains
(typically) different connected components corresponding to different Dp-branes. These
different components of the moduli space lead in general to different geometries. However,
the resulting geometries are all related by T-duality to one another (and so describe equiv-
alent string backgrounds); this is simply a consequence of the fact that every Dp-brane
can be transformed, by a suitable T-duality transformation, to a DO-brane. Thus, in this

"The Neumann branes corresponds to the unit circle z; = 0, |z2] = 1, and are part of the connected
component of the moduli space of conformal branes.



case, every such component of the brane moduli space can be thought of as a DO-brane
moduli space, and hence leads to a geometric interpretation in the above sense. The differ-
ent geometries one obtains in this way describe the different ‘geometrical interpretations’
one may give to the string theory in question. All of them describe, however, equivalent
conformal field theories.

For the circle theory we have been considering so far, the full D-brane moduli space is
under control, and one may test this idea further. For a generic radius, the full brane moduli
space contains three connected components: the connected part of the moduli space of the
Virasoro or conformal branes — this excludes the Neumann and Dirichlet branes unless
they are already part of it (which only happens is the radius is a multiple or a fraction of the
self-dual radius); the moduli space of Dirichlet branes, and the moduli space of Neumann
branes. In each case we should then consider the sigma model whose target space is the
brane moduli space in question. In order to define such a sigma model one obviously needs
to have a metric on the brane moduli space; this can be naturally obtained from the open
string correlation functions. It is a priori not obvious whether the resulting sigma-model
is conformal; to make it conformal will sometimes require that certain B-fields are also
switched on. For this to work the open string marginal operator correlation functions in
the appropriate sector should encode a B-field, just as they encode a metric. Such a B-field
is, for example, required for the case of the moduli space of the conformal branes which
(for a ‘rational’ radius) is the quotient SU(2)/Zps X Zy; with the B-field the resulting
conformal sigma-model is then the Z; x Zy orbifold of the SU(2) wzw model at level
kE = 1. So the ‘geometry’ that is associated to these branes is SU(2)/Zy x Zy.

The analysis for the Neumann or Dirichlet moduli spaces is simpler: both are equivalent
to a circle, which describes, on the nose, a conformal sigma-model. The only difference
is that the radius of the circle we obtain in this manner is different for the Dirichlet and
Neumann branes. However, the two radii are related to one another by T-duality (as in the
case of the Dp-branes mentioned above), and thus the resulting geometries are equivalent
in string theory.

For the case at hand, the three brane moduli space components lead to a circle (for
the case of the Neumann and Dirichlet branes), and SU(2)/Zy x Zy (for the case of
the conformal branes). Superficially, the latter geometry is rather different from a circle;
however, as a conformal field theory, it is precisely equivalent to it again: the circle theory at
radius R = (M/N)Ryq is a Zys X Zy orbifold of the self-dual radius theory, which in turn is
equivalent to the level £k = 1 SU(2) wzw model! So even in this more complicated example,
it seems that the different components of the brane moduli space lead to equivalent quantum
geometries. It would be very interesting to analyse whether this observation generalises to
other backgrounds as well.

2.2 Boundary states of the orbifold

The orbifold acts on the circle theory by the involution Z : Y (z,2z) — —Y(z,z), where
in order to avoid confusion with the circle description we now denote the boson by Y.
The closed string spectrum consists of the invariant states of the circle theory; in addition
we have two twisted sectors that are built on the two twist fields o%(z, z) (associated



with the two fixed points at yg = 0,7R). These twist fields have conformal dimension
A = A =1/16, and the oscillators are half-integer moded in the twisted sector.

Let us now specialise to the self dual radius R = 1/v/2. As at any radius we have the
usual Dirichlet branes that are obtained by symmetrising the circle Dirichlet branes under
the orbifold action

D5 g)erty = 21" cos(v2ny) |(n,0)) (2.8)
neL
where y € (0,7/+v/2). These branes are fundamental, except if they sit at one of the two
fixed points yo = 0,7/+/2. If this is the case, one can resolve them into fractional Dirichlet
branes that also involve the twisted sector Ishibashi states (where yo = 0,7/v/2)

D3 o)y = €21/ 70=rb=r g0y (2.9)

The resulting fractional branes are then [LJ]

1 _
”Dv Yo; :l:>>0rb = 5 ”D7 y0>>orb 2 1/4|D§ y0>>tw ) (2'10)

where yo = 0,7/v/2. The situation is similar for the Neumann branes. The orbifold
invariant combination of the Neumann branes are

IN: Ghory = 214 Y " cos(v2wh) |(0,w)) - (2.11)

wWEZ

The appropriate combination of Neumann Ishibashi states from the twisted sector reads

1 o 1y § WD
IN; o = —z e 2z sborbor (g0 4 V20 5 o), (2.12)

V2

7. As for the Dirichlet branes, the full Neumann fractional brane boundary

%.
states are then

where gy = 0,

. 1 . _ .
IN, Go; £) = 3 IV G0Yorb £ 277 N3 o) e - (2.13)

These are the well-known standard constructions, but one can also obtain the addi-
tional conformal boundary states for this theory. Indeed, the orbifold can be thought of
as the SU(2) orbifold by D;. This orbifold acts on SU(2) group elements as g — o1g07.
Indeed, the operator Z acts on u(1) x (1) primaries as (m,m) — (—m,—m), and hence
maps the Virasoro Ishibashi states as

|7, m,m)) — |4, —m,—m) . (2.14)

This is then reproduced by g — o190 since (see ([A.9) for the definition of these matrix
elements)

D’ i(9) = ()" " Dy (9%) = D (039703) = Dip(91901) - (2.15)

Thus the orbifold invariant boundary states are simply

lodert, =2/ 3" 5[Dhuin (9) + Di (Ad, )] 1 m, ) (216)

]7m7m
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Figure 2: Two sections of the brane moduli space of the orbifold theory, with the fractional branes
circle added.

The branes are fundamental unless g belongs to the fixed point set of the orbifold, i.e.
unless ¢ is a matrix of the form g = €''%. It contains the particular cases ¢ = 0,7 and
¥ = m/2,3mw/2. The former corresponds to the Dirichlet brane at the two fixed points, while
the latter are the Neumann branes at the T-dual fixed points — see the discussion above.
We postpone the construction of the fractional branes for generic 1 to the next subsection.
For the moment we only note that, in terms of the Euler angles parametrisation of SU(2),
see (R.6), the orbifold acts as 6 — —6 and ¢ — —¢, and the fixed point set corresponds to
6 = ¢ = 0. Using the same embedding in C? one gets the moduli space depicted in figure 2.

2.3 Mapping of moduli spaces and resolution of the orbifold branes

In the previous subsection we have obtained the full brane moduli space of the circle and
the orbifold theories at the multicritical point. For the circle theory, there is a continuous
family of conformal branes parametrised by SU(2)/Ca, with a circle removed corresponding
to the fixed point set of the orbifold. This circle is replaced by a disconnected S! component
corresponding to the moduli space of a single Dirichlet brane. For the orbifold theory we
also have a continuous family of conformal branes parametrised by SU(2)/D; (the orbifold
is different, although isomorphic), again with a circle removed corresponding to the fixed
point set of the orbifold. We expect on general grounds that the corresponding branes
can be resolved into two fractional branes; for special points (that correspond either to
standard Dirichlet and or Neumann branes) we have already described this above, and we
shall construct the resolution for the other branes below. It is interesting to note (as was
already observed in [f]) that the family of resolved branes interpolates between fractional
Dirichlet and fractional Neumann branes.

Our strategy will be to assume that the two brane moduli spaces are equivalent. We
can then use the known resolution of the fixed point branes of the circle theory — these



are pairs of Dirichlet branes at opposite points on the circle, that are resolved into single
Dirichlet branes — in order to determine what the resolution of the fixed point branes in
the orbifold theory should be. As we shall see, the resulting picture satisfies a number of
non-trivial consistency conditions, thus suggesting that our identification has been correct.

Relating the generic conformal branes. We start by identifying the generic confor-
mal branes of both theories that are parametrised by SU(2)/Zs. As we have explained
above, these branes contain the standard Neumann branes of the circle theory, as well as
the standard (non-fixed point) Neumann and Dirichlet branes of the orbifold. The corre-
spondence must relate the two different Zs actions into one another, and one finds that
this is achieved by the rotation matrix of Euler angles (¢ = w/4;0 = 7/2;¢ = 0), i.e. the
map

_ . 1 11
P YGcirc 7 GYorb = p(gcirc) - hgcirc h ! with h = ﬁ (1 _1> 5 (217)

which has the property p(os3gos) = o1p(g)o1. Note that p is only fixed by this property
up to the ambiguity of replacing p by p with p(g) = p(dgd~'), where d is a diagonal group
element; this ambiguity corresponds simply to fixing an origin on the circle. Thus we have
the dictionary

||.g>>circ — ||p(g)>>orb . (2'18)

Under this map, the pairs of antipodal Dirichlet branes in the circle theory (i.e. the group

Z'C’S(’) are mapped to orbifold branes with

0 isinf
g — (cos isin > ’ (2.19)

elements g = ¢

isinf cosf

corresponding to the fixed point set of the orbifold. These are neither Dirichlet (diagonal
g) nor Neumann (off-diagonal g) boundary states, except for particular values of 8. For
0 = {0; 7} (the ‘Dirichlet points’) one gets a regular Dirichlet brane sitting at one of the
two orbifold fixed points, while for 6 = {Z; 37” (the ‘Neumann points’) one gets a regular
Neumann brane at a T-dual fixed point.

As another special case, the Neumann branes of the circle theory are mapped to orbifold

o = <z’sin1,b —cos¢> . (2.20)

cos ) —isiny

branes with

These are fundamental branes for any v, as are the corresponding Neumann branes in the
circle theory.

Resolution of the orbifold branes. Before we can discuss the dictionary between the
fractional branes, we first need to understand the resolution of the fixed point branes in
the orbifold theory. We expect on general grounds that the resolved branes will involve
Ishibashi states from the twisted sector. We therefore need to understand first what Vira-
soro Ishibashi states appear in the twisted sector of the orbifold.

— 10 —



The twisted sector (1) representation of the orbifold is not an irreducible Virasoro
representation; for example, the state b_; /0" is a Virasoro highest weight state. On the
other hand, the conformal dimensions that appear (A = % + % with N € N) all correspond
to non-degenerate Virasoro representations. Thus one can determine the decomposition
based on the comparison of characters. The chiral twisted character of a single fixed point is

n(r) \/192 193 _75‘2(7/2 iql(“v” (2.21)

Dy (7)

where we have used standard ¥-function identities, see appendix [f]. The characters that
appear on the right hand side are all characters of irreducible Virasoro representations.
By the standard argument we therefore obtain Virasoro Ishibashi states from the twisted
sector labelled by

|(€+1/2)% /4 90 )vir

, \/— labels the two fixed points. Note that these Ishibashi states are in
one-to-one correspondence with the Dirichlet Ishibashi states |(n,0)) of the circle theory

where yg = 0

corresponding to odd n. (This is in fact guaranteed by the equivalence of the two closed
string spectra.) We fix their normalisation by requiring that

D5 yo)ew = D 1€+ 1/2)% /4 yo)vi - (2.22)
=0

For the Neumann twisted sector Ishibashi states, we have to take care of the extra minus
sign in the coherent state, see eq. (2.12). It follows that if the Virasoro highest weight vector
involves an odd number of oscillators, the corresponding Ishibashi state appears with a rela-
tive minus sign. A Virasoro highest weight vector of conformal weight A = 1/16+¢(¢+1)/4
is made out of an even number of oscillators provided that ¢(¢ 4 1)/4 € Z, i.e. for £ =0 or
1 mod 4. Thus it follows that

Moo = 5 S F [l 0w+ VI + 2 D] - (22)
£=0

Because of the symmetries of the problem there is some arbitrariness in the mapping
between the (fractional) branes. We choose to identify the pair of Dirichlet branes at
x ={0; 77\/5} with the unresolved orbifold Dirichlet brane sitting at the fixed point y = 0,
consistently with the map (R.I7). It implies that the single Dirichlet brane at = 0
is mapped for instance to the Dirichlet fractional brane (P.1() with positive sign; with
this convention the single Dirichlet brane at @ = 7v/2 corresponds then to the fractional
Dirichlet brane (R.10) with negative sign. By comparing the boundary state (R.23) with
the odd-momenta coupling of (R.5) it follows that we identify

|D; (20 +1,0)) + [ D3 (=20 = 1,0)) = |(£ +1/2)* /4550 = O)vir - (2.24)

The pair of Dirichlet branes at x = {7/v2;37/v2} in the circle theory should then be
identified with the unresolved orbifold Dirichlet brane sitting at the fixed point y = 7/v/2,

— 11 —



using (R.17). This leads to the identification
i(=) [ID; 20+ 1,00) = D5 (=20 = 1,0))| = [(€+1/2)2 /4590 =7/v2hvir . (225)

These two linear relations (2.24), (B-2§) now fix the dictionary between the twisted sector
Ishibashi states of both theories completely. Since we know already how to resolve the fixed
point branes of the circle theory (these are just standard single Dirichlet branes) we can

now make an ansatz for the resolved branes of the orbifold theory, using these relations.
This leads to

. 1 .
e’ 1w§:l:>>orb = B lg =€’ 1¢>>0rb

+o f: { cos <<e + %)w) (€ +1/2)%/4; 0) vir (2.26)
£=0

wsin (043 ) ) 1+ v s

As a consistency check of this analysis we can now verify that the branes at ¢ = 5 and
P = 37” correspond to the Neumann branes with Wilson lines g9 = 0 and gy = %,

respectively. Indeed, we find that, for instance,

Hei017r/2,j: 1 Hei017r/2>>

) >>orb = 5 orb

L g i(—)w{w 1224 0)vie + (€ + Y2247/ Bvie b, (2.27)
£=0

which is exactly the same expression as the Neumann fractional brane boundary state with
Wilson line §p = 0, see eq. (R.13) together with (R.23). The analysis for ¢ = 37/2 is
essentially identical.

In summary we have thus constructed the resolution of the general conformal fixed
point branes of the orbifold theory by assuming that the branes of the circle and the
orbifold theory are equivalent. Our ansatz has passed the fairly non-trivial consistency
check that it reproduces correctly the known resolution of both Dirichlet and Neumann
branes of the orbifold theory. We regard this as convincing evidence that the proposed
resolution, as well as the identification of the brane moduli spaces, is indeed correct.

Incidentally, our analysis also implies that all of these resolved branes of the orbifold
theory actually preserve a (1) symmetry, not just the Virasoro symmetry (because the
corresponding branes of the circle theory do); the relevant chiral currents are (J,J) =
(cos 2¢/2X[(2),cos 2/2X g(%)). Unfortunately, it is however rather difficult to verify this
directly.

3. The ¢=1 moduli space

Next we want to consider the N' = (1,1) superconformal field theories with ¢ = % =1.

As for its bosonic counterpart considered in the previous section, there is a continuous
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moduli space of such theories, with additional isolated points. All lines of theories can be
obtained as orbifolds of the theory of a free boson and a free Majorana fermion. Since
there are a number of different orbifolds one may consider (involving in particular the
fermion number), the moduli space is quite rich and contains five different lines of theories
(circle, orbifold, super-affine, orbifold-prime and super-orbifold), intersecting pairwise at
five different multicritical points (we refer the reader to [[l4] for details). In order to obtain
a modular invariant partition function we have to chose a Gso-projection; for the circle
theory we shall consider the 0B-type GSO-projection in the following.®

Among the multicritical points, four are such that none of the non-trivial super-u(1)
representations that appear in the spectrum are reducible with respect to the N’ = 1 super-
Virasoro (SVir) algebra; at these multicritical points the brane spectrum will therefore be
rather small, and will in particular not contain any component related to SU(2) besides the
identity component that is common to all non-rational radii. However, this is not the case
for the multicritical point where the circle line at R = 1 intersects the super-orbifold line
also at R = 1. In that case the spectrum contains many degenerate SVir representations,
and hence the brane moduli space is fairly rich. This is not accidental as both theories are
(isomorphic) Zg-orbifolds of the super-affine so(3); x so(3); theory , i.e. the theory of three
left- and three right-moving Majorana-Weyl fermions with identical boundary conditions
on the torus. Since this is the most interesting case, we shall restrict ourselves to this
multicritical point in the following.”

We shall be interested in the branes that preserve the A/ = 1 superconformal symmetry,
i.e. that satisfy the gluing condition

(Ln—L-n)IB;n) =0,  (Gr+inG_,)|B;n) =0, (3.1)

where n = +1 labels the two possible superconformal gluing conditions. We will con-
sider the two cases separately as they give rise to different sets of branes and have subtle
differences regarding the dictionary of the D-branes.

3.1 Branes of the circle line

We begin with the analysis of the free boson and fermion theory, i.e. the tensor product
of the ¢ = 1 circle line (a free boson at radius R) with an Ising model, i.e. a pair of
Majorana-Weyl worldsheet fermions x, x. This is the theory that was studied in [[].

As before, we first have to find all SVir Ishibashi states, i.e. we have to analyse which
SVir representations are degenerate. In the Neveu-Schwartz (NS) sector a SVir representa-
tion is degenerate if the highest weight has conformal dimension A = */2 with 7 integer.
The first null vector is then at level r + 1/2, which has therefore the opposite worldsheet
fermion number parity compared to the primary state. A super-ti(1) representation with

8At ¢ =1 only the 0A- and 0B-type GSO-projections are possible. Obviously, after Gso-projection, the
theory is not an A = (1, 1) superconformal field theory any more since the supercurrents are projected out.

9This is actually the only multicritical point among the five for which the superconformal, rather than
the Gso-projected, theories are identical [E]
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charge r decomposes then into irreducible SVir representations as

&Y, Ns
VNS = ZVH-Z : (3.2)

In this decomposition the SVir representations have (chiral) worldsheet fermion number
F =/{ mod 2. In the Ramond (R) sector the SVir representations are degenerate for A =
r?/24+1/16 with r € N+1/2 (the null vector is also at level r+1/2). Super (1) primaries with
such conformal weights (in the NSNS and RR sectors) occur whenever the compactification
radius is rational. We consider the case R = 1 below, relevant for the analysis of the
circle/super-orbifold multicritical point. The left and right conformal dimensions of the
u(1) primaries then read

1 /n 2 g2 m2  a? - 1 /n 2 a m a
A=—-(= — = — A=—-|(=— — = — .
2(2“") T2 16 2( w) + + (3.3)

where a =0 (a = 1) in the NS (R) sector.

Boundary states in the NSNS sector. Let us start with the NSNS sector Ishibashi
states. The super-i(1) representations are reducible with respect to the SVir algebra if
the momentum 7 is even. From the decomposition of these representations into irreducible
SVir x SVir representations of dimension A = A = j°/2, one obtains a set of Ishibashi
states |7, m,m;n)xs, where j € N, j —m, j — m are integer and |m|,|m| < j. The label
n denotes the parameter in the gluing condition (B.1]). The superconformal branes in the
NSNS sector, constructed out of this set of Ishibashi states, then read [L1]]

o = = 3 [Dhin (9) + Do Aoy )] imominhs . (34

JEN, m,m

The sum in square brackets imposes the constraint that m — m is even (since the winding
number w is integer); the constraint that the momentum number 7 is even is automatically
satisfied since j (and hence m and m) is integer. The boundary state is invariant under
the diagonal Gso-projection for both choices of 7. Indeed, the SVir x SVir representation
with A = A = j2/2 is such that j = m + ¢ = m + £. Since m — m is even, so is £ — £, and
it follows from the discussion below eqn (B.3) that all Ishibashi states are Gso-invariant.

As before, the boundary state corresponding to g and to Ad,, g are the same. Fur-
thermore, branes parametrised by g and —g are identical, as D’ - (—g) = (—)¥ D7 _ (g).
Thus the moduli space of NSNS sector boundary states is SO(3)/Zs.

For off-diagonal SU(2) group elements (i.e. group elements of the form g = ioye?3?),
one gets an ordinary NSNS sector Neumann boundary state, with couplings to all winding
states (as m = —m = w is not constrained). On the other hand, diagonal group ele-
ments (g = €*3%) describe a pair of Dirichlet branes since only even momentum states (n
even) contribute. The single Dirichlet branes occur as the resolution of these branes; their

boundary state is given by

| Ds 5 ms > e"(n,0)) © [Dins (3.5)

neL

L
V2
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where |D;n)ys is the NsNs Dirichlet fermion Ishibashi state solving

(Xr - ini-r) [Dim)xs =0 (3.6)
The parameter x denotes the position of the brane with x = 6/2 and 6 € [0, 47).

Boundary states in the RR sector. In the RR sector the discussion is more subtle
because of the fermionic zero modes. First we see from (B.J) that the super-ii(1) represen-
tations are degenerate with respect to the SVir algebra for odd momentum n. Analogously
to what we have done above, we thus get SVir Ishibashi states |j, m,m;n)r where now
(j,m,m) are half-integer moded. The boundary states then read

o= 3 [P 9+ Do Ay )] i . 37
JEN+5,m,m
As before the boundary states associated to g and Ad,, ¢ are identical, but now the bound-
ary state corresponding to g and —g have opposite sign. The projection in the square
bracket guarantees, as before, that only terms with m — m even contribute.
The analysis of the GSo-projection is slightly subtle. Using the conventions of [[L1], the

superconformal Ishibashi states satisfy
(=) gy mymsmhe = —n(=)""" |5, m, m;n)w (3.8)

while the fermionic Dirichlet and Neumann Ishibashi states obey

(D) = =0 1Dsnhe, (2T INi ) = 0| Nsn)w . (3.9)

Here |D;n)y is characterized by the gluing condition (B.6), while the gluing condition for
|N;n)r has the opposite sign, (xr + inx—r)|N;n) = 0. Note that this is consistent with
the fact that Dirichlet Ishibashi states appear with m = m, while for Neumann Ishibashi
states we always have m = —m; in the R-sector m and m are half-integer, and hence m —m
is odd.

As before, the RR-sector boundary states (B.7) are fundamental unless g is diagonal.
For diagonal g, we have again a pair of Dirichlet branes which can be resolved; the resolved
single Dirichlet brane boundary state

|Ds ;) = % S 6| (n,0)) @ [Di ) (3.10)

ne”L

then couples to even and odd momenta n, whereas (B.7) only involves terms with odd n
(since m and m are half-integer).

The full boundary states are finally obtained by putting NSNS- and RR-sector boundary
states together. Their structure depends on the choice of 7 in (B.1]). For n = —1, all SVir
Ishibashi states are Gso-invariant, and we get

lozn = 1) = (1o = ~1has + ilsn = ~1)n) (311)
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The brane with —g is the antibrane of that with g, but we have the identification that g
and Ad,,g describe the same D-brane. The moduli space is therefore SU(2)/Zy. These
branes are fundamental unless g is diagonal; for diagonal g we can resolve the brane into a
Dirichlet brane anti-brane pair sitting at opposite points on the circle. The full boundary
state of a single Dirichlet brane is of the form
1

V2
On the other hand, for g off-diagonal, the brane (B.I]) describes a Neumann brane that
does not involve a RR component — these branes are the analogues of the non-BPS branes
that were first studied by Sen [RI]. This is in agreement with the fact that for n = —1 the
RR-sector Neumann Ishibashi states are Gso-odd — see (B.9).

For n = +1, all RR SVir Ishibashi states |j, m, m)rg are Gso-odd. Thus for n = +1
the boundary states |g;n = +1)xs are consistent by themselves. As discussed above, the

ID;2; ) = = (ID3 @i =)ns + il Dz =) ) - (3.12)

corresponding moduli space is SO(3)/Zz. The branes are fundamental provided that g is
neither diagonal nor off-diagonal: the branes with g diagonal describe the superposition of
two non-BPs Dirichlet branes at opposite points on the circle (that only involve NSNS-sector
Ishibashi states). For g off-diagonal, on the other hand, the above Zy (that inverts the signs
of the off-diagonal matrix elements of g) acts trivially on SO(3) and the branes get resolved
into a superposition of a Neumann brane anti-brane pair, i.e. in branes with opposite RR
charge. (For n = +1, the RR-sector Neumann Ishibashi states are Gso-invariant.)

3.2 Super-affine line

Although the multicritical point we are interested in lies on the intersection of the circle
and the super-orbifold line, it is useful to discuss first the branes of the super-affine line, as
it contains the point of maximally extended symmetry in the ¢ = 1 moduli space. Indeed
for R = 1 the super-affine theory is identical to a theory of three Majorana fermions
with identical boundary conditions, realising an so(3); X so(3); Ka¢-Moody algebra with
N = (1,1) supersymmetry.

The super-affine theory can be obtained from the circle theory as the orbifold by the
symmetry S : sy(—)t, where sy is the shift symmetry X +— X + 7R while Fy; denotes
the left-moving spacetime fermion number. Thus (—)t acts as +1 (—1) on the NSNS (RR)
sector. The full torus partition function of the super-affine theory is

=5 3 3 (e

¥,0€ZL2 nywEL

L(h+RCw)” A (E-Ree+)”

qs - Z (_)a5+b~/+'y5

n(r) i 2

93]

Ui

(3.13)
Note that (as is usual for (=)t orbifolds), the GSO-projection is reversed in the twisted
sector (y = 1). Furthermore, the spacetime fermion number parity is opposite in the
twisted sector, i.e. it acts as —1 in the twisted NSNS sector and as +1 in the twisted RR
sector.

Boundary states of the super-affine theory at R=1. Let us now construct the
branes of the super-affine theory at R = 1, starting from the circle theory at R = 1. In the
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untwisted NSNS sector, the orbifold by S has the effect of projecting onto even-momentum
states, which implies that all the superconformal Ishibashi states |j, m,m;n)ys are orbi-
fold-invariant (as they all have n = m + m even by construction). On the other hand, the
additional Dirichlet Ishibashi states with n odd are projected out. Thus all superconformal
Ishibashi states in the untwisted sector NSNS sector are of the form |j,m,m;n)ys with j
integer and m — m even.

In the untwisted RR sector, the RR ground states are odd under (—)*t, and thus only
odd momentum states survive. Again all the superconformal Ishibashi states |j, m,m;n)x
are invariant under the orbifold projection (since n = m + m is now odd), while the
even momentum states in (B.10]) are again projected out. The same also applies to the
Neumann Ishibashi states (for which n = 0). Thus all superconformal Ishibashi states in
the untwisted RR sector are of the form |7, m,m;n)ys with j half-integer and m — m even.

In the S-twisted sector of the super-affine theory, the winding number w is half-integer
(see eq. (B.13) for v = 1). In the twisted NSNS-sector, we therefore get superconformal
Ishibashi states labelled by |j, m, m; n)xs; tw, Where j is still integer, but now m —m is odd.
As mentioned above, the ground state of the twisted NSNS sector is now GsO-odd, and
therefore these Ishibashi states survive the Gso-projection. They also survive the orbifold
projection by S since n = m + m is now odd, but the twisted NSNS sector is also odd
under (—)fst. Taken together with the Ishibashi states of the untwisted NSNS sector we
therefore have SVir Ishibashi states associated to (j,m,m), where j is integer, but without
any constraints on m — m.

The analysis for the Ishibashi states from the twisted RR sector is similar. We find
superconformal Ishibashi states labelled by |j,m, m; ). tw, where j is half-integer, but now
m — m is odd. Since the GSO-projection in the twisted sector is opposite to what one had
before, they are Gso-invariant for n = —1 (and Gso-odd for n = +1). Furthermore they
are orbifold invariant since n = m+m is now even as is the (—)%*t parity of the twisted RR.
Together with the superconformal Ishibashi states of the untwisted RR sector we therefore
get SVir Ishibashi states associated to (j, m,m), where j is half-integer, but without any
constraints on m — m. These states are only Gso-invariant for n = —1.

It is now straightforward to construct the boundary states of the super-affine theory.
In the NSNS the boundary states are simply given by

lg)ns;s—a = Z D (9) 1, m, s m)ss (3.14)

JjENMm,m

where j € N, m, m € Z with |m|, |m| < j, but with no further restrictions on m,m. In the
RR sector we have instead

[9)rss—a=" > Do (9) i, mmi ), (3.15)

JEN+5,m,m

where j, m and m are now half-integer with |m/|, |m| < j, but again with no further restric-
tions on m,m. The RR sector boundary state is only GSoO-invariant if n = —1; otherwise it
is Gso-odd.
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Putting the boundary states together, their structure depends on the choice of n. If
n = +1, the NSNS boundary state is already consistent by itself. Since only integer j appear
in the sum, the moduli space of these branes is precisely SO(3). The annulus amplitude in

) 32
A(t) = <1273((z'ti;)> , (3.16)

i.e. it corresponds to three free fermions with identical boundary conditions. Since the sum

the open string channel is

over m and m is not further restricted, all of these boundary states are fundamental. In
particular, these boundary states describe a single Dirichlet brane for diagonal g, and a
single Neumann brane for off-diagonal g.

For n = —1, we can add the RR sector contribution, and the full boundary state is
| Baca = (] s sa -+l Dnss-a) (3.17)
; = — L = — ’ = — S s— VA ’ = — g — . .
g;n s—a \/5 g1 NS;s—a g;n R;s—a

Since there are no identifications, the moduli space of these branes is precisely SU(2). The
open string channel annulus amplitude now reads

1| (956 \>2 [ 040it)\*?
A”:ikﬁm> () | (319

This describes precisely the Gso-projected spectrum of three free fermions (with identical

boundary conditions).

Compared to the circle theory, the moduli space of branes is much simpler since it does
not involve any non-trivial identifications. The super-affine theory at R = 1 is therefore
the natural analogue of the bosonic circle theory at the self-dual radius. As such, it is the
natural starting point from which the branes of the other theories should be constructed.

The circle line from the super-affine line. In order to check this idea we should, in
particular, be able to reproduce the branes of the circle theory (at R = 1) starting from
the simple branes of the super-affine theory at R = 1. The circle theory at R = 1 is the
orbifold of the super-affine theory at R = 1 by the winding shift orbifold sy : X — X4 /R.
In the untwisted sector, this simply removes the sectors for which the winding number if
half-integer. The twisted sectors of the siz-orbifold describe odd-momentum states in the
NSNS sector, and even-momentum states in the RR sector, and one therefore obtains indeed
the circle theory.

The winding shift orbifold acts on the superconformal Ishibashi states of the super-
affine theory at R =1 as (—)™ ™. In terms of the boundary states that are labelled by g
this action becomes

5% ”g>>s—a = HU3 903>>s—a . (319)
The unresolved branes of the circle theory are then simply the sums
1

7 <||g>>s—a + |Ady, g>>s_a) .
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These are precisely the superconformal boundary states of the circle theory at R = 1, see
eq. (B.11)) for n = —1 and eq. (B.4) for n = +1. Fixed points appear for g diagonal, and for
the case of n = +1 also for g off-diagonal. (Recall that for n = +1, the group elements live
in SO(3)=SU(2)/Zs.) The corresponding branes then need to be resolved; this involves
adding in sg-twisted sector states. For both values of i1 we have s¢-twisted sector Dirichlet
Ishibashi states in the NSNS sector with odd momentum. For n = —1 we have in addition
sg-twisted sector Dirichlet Ishibashi states in the RR sector with even momentum, while
for n = 41 there are sz-twisted sector Neumann Ishibashi states in the RR sector with all
winding numbers. Adding in these twisted sector components then allows us to resolve the
fixed point branes: for diagonal g we obtain the single Dirichlet branes of the circle theory.
(For n = —1 the resolution involves adding in NSNS and RR components, while for n = +1
only twisted NSNS sector states are used.) Finally, for n = +1 and g off-diagonal, we obtain
single Neumann branes by using the twisted RR sector Neumann Ishibashi states.

3.3 Super-orbifold line

After this brief interlude we can now return to the super-orbifold line that intersects the
circle line at R = 1. The super-orbifold theory can be obtained as an orbifold of the super-
affine line by the inversion Z : Y — —Y, x — —x, X — —X. The branes are obtained
from the super-affine branes in a very similar fashion as for the ¢ = 1 theories discussed
previously in section f.

We restrict the discussion to the super-orbifold theory at radius R = 1. By the usual
argument, we obtain invariant boundary states by adding together branes and their image
under the orbifold action; this leads to

lodso = =5 (Iahios + lor 9 1)scn) (3:20)

This describes a fundamental brane unless ¢ is a fixed point. For n = —1 where g € SU(2),
the only fixed points are the group elements of the form g = 1% i.e.

_ <COS¢ isinzb) . (3.21)

1sint) cosvy

For n = +1 when g € SO(3), we have additional fixed points when o1 g o1 = —g, i.e. for

G= (ZCOSH —Sln9> . (3.22)

sinf —icos6

Both fixed point sets contain standard Dirichlet branes (¢, = {0;7}) and standard Neu-
mann branes (¢, 0 = {r/2;37/2}).

Twisted sectors and fractional branes. In order to resolve these fixed points we will
need to add Ishibashi states from the twisted sector of the Z-orbifold. In the twisted sector
the bosons are half-integer moded, while the fermions are integer moded in the NS sector,
and half-integer moded in the R sector. There are again two fixed points, and at each of
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them we can decompose the chiral character into irreducible representations of the SVir
algebra. For the NS sector we find

99 1/2 792\/_ q2(+ s 1/2 0 N
<m> ooz Z Iy :ZXM- (3.23)

nEZ n=0 2

Each term in the sum over n corresponds to the character of a (non-degenerate) irre-
ducible SVir representation. Thus we get two sets of superconformal Ishibashi states
|(n + 1/2)%/2,y0; n)xs.svir, Where yo = 0 and yo = /2. (Note that in the super-affine
theory, y and y + 7 are identified, and hence yy = /2 is a fixed point of the inversion.)
Since these are Ns SVir Ishibashi states, there are no zero modes for the supercurrents, and
the Ishibashi states are Gso-invariant for both choices of . We choose their normalisation
such that the Dirichlet Ishibashi states at these fixed points are simply

oo
’D; y0>>NS;tW = Z ’(n + 1/2)2/27 Yo; 77>>NS,SVir . (324)
n=0
We observe that these Ishibashi states are in one-to-one correspondence with the odd-
momentum NSNS sector Dirichlet Ishibashi states of the circle theory (that appear in the
twisted sector of the si orbifold).
In each twisted R sector (i.e. for yo = 0 and yo = §) we obtain instead

U3 1/2_ 1 93v/0y U2 1/2_ &Vick 3.95
(0_4> V2 PP n% n <2n> L et (329)
which we have again decomposed into a sum of (non-degenerate) irreducible SVir repre-
sentations. Note that the R representation with n = 0 has a single ground state (since it
is annihilated by Gg), whereas the representations with n # 0 have two ground states that
are related to one another by the action of Gg. We therefore get, for both values of 7,
exactly one RR sector Ishibashi state for n = 0 since the zero-mode condition is now trivial!
The two Ishibashi states corresponding to yo = 0 and yo = 5 have opposite GSO-parity
since the one with yy = 0 comes from the untwisted sector of the S-orbifold, while the one
at yo = § comes from the S-twisted sector. Thus only one of these two Ishibashi states
survives the GsO-projection; as we shall see later on, in the conventions of this paper it is
the one with yo = §

For n # 0, on the other hand, there are four ground states (each chiral representation
has two ground states) and we get exactly two Ishibashi states [n?/2,yo;n)x for each
value of 7. However the two Ishibashi states for given n have opposite GSO-parity, and
thus only one of them survives the Gso-projection. Thus for each value of 1 we have one
Ishibashi state [n?/2,y0;1)r, where n > 1 and where yo can take the two values yo = 0 and
yo = 5. These are in one-to-one correspondence with the even-(nonzero)-momentum RR
sector Dirichlet Ishibashi states of the circle theory for = —1, or the non-zero-winding
Neumann Ishibashi states of the circle theory for n = +1. (These are the Ishibashi states
of the circle theory that appear in the twisted sector of the sg-orbifold.) Obviously this

had to be the case since the two closed string theories are equivalent.
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3.4 The brane moduli space at the multicritical point

We are now in the position to establish the dictionary between the superconformal branes
of the circle and super-affine theories at R = 1. As discussed above the circle theory can
be obtained as a Cs orbifold of the super-affine theory at R = 1, while the super-orbifold
theory corresponds to a D; orbifold of the same theory. The situation is therefore very
similar to the bosonic case discussed in section 2. However, as we shall see below, there
are new subtleties associated with the GsO projection.

3.4.1 Identification of the unresolved branes

The identification between the unresolved superconformal branes is as in the bosonic

¢ = 1 model. The two superconformal branes moduli spaces are related by the same
rotation (R.17), leading to the identification

lg; M)eire <= p(9);M)s—o - (3.26)

This works for both values of . Here |g;n) is a NSNS boundary state if n = +1; for n = —1,
the branes involve NSNS as well as RR components.

3.4.2 Identification of the resolved branes

We are now left with the problem of identifying the fractional branes of the super-orbifold
theory (involving the twisted sectors) with the corresponding boundary states of the circle
theory. The analysis depends crucially on the sign of the parameter n which labels the
superconformal boundary conditions. We therefore consider each case separately.

Our strategy will be to assume that the branes of the circle theory are in one-to-one
correspondence with those of the super-orbifold theory. This will allow us to determine the
twisted sector resolutions in the super-orbifold theory, by translating the known resolutions
from the circle theory. As we shall see, the resulting picture is compatible with the intrinsic
constraints of the super-orbifold theory; this is a non-trivial consistency condition on the
ansatz, and therefore suggests that the assumed one-to-one correspondence of the branes
is indeed correct.

Correspondence of fractional branes for n = +1. Let us start from the circle theory
branes analysed in subsection B.1] Before resolution these branes only have an NSNS sector
and are parametrised by SO(3)/Zy. There are two circles of fixed points corresponding to
diagonal and off-diagonal matrices.

The diagonal matrices describe two Dirichlet branes at opposite points on the circle,
and are resolved using odd-momenta NSNS Dirichlet Ishibashi states. Under the map (2.17),
these fixed point branes correspond to the family of branes in the super-orbifold theory that
are described by ¢ as in (B.2])). From the super-orbifold point of view, this set of branes
contains one ‘Dirichlet point’, namely g = I (for ¢ = 0).!° The corresponding boundary

0Note that unlike the bosonic case, there is only one independent Dirichlet point in the family of boundary

states () since in SO(3) g & —g.
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state (B.2() is

[T \/_Z Z|jmm77—+1 Ins = \/_Z (2m,0)) ® |D;n=~+1)xs . (3.27)

m=—00 j= \m\ m=—00

We associate this boundary state with a regular Dirichlet brane sitting at the orbifold fixed
point y = 0.

This regular brane is resolved using the NSNS twisted sector Ishibashi states that come
from the corresponding orbifold fixed point (i.e. from y = 0). The relevant combination
is described by eq. (B.24) with y = 0. In the twisted NSNS sector, the fermions x, ¥ are
periodic, so the fermionic ground states belong to a two-dimensional representation of the
zero-mode algebra. However, only one linear combination is orbifold invariant, and it is
the one that satisfies a Dirichlet boundary condition for n = +1, i.e. it is a solution of

(Xo — MX0)|0)ns:7—tw. = 0 with n = +1. (3.28)

This state is then also Gso-invariant.

The family of super-orbifold fixed point branes (B.21) also contains a ‘Neumann point’
for ¢ = m/2. Tt is resolved with a Neumann twisted NSNS sector Ishibashi state. Somewhat
surprisingly, this Ishibashi state is only associated with the fixed point y = 7/2. In fact, as
we saw above, only the ground state satisfying the Dirichlet boundary condition eq. (B.2§)
is orbifold- and GSO-invariant in the twisted sector associated with the fixed point y = 0.
However, the fixed point y = 7/2 is ‘twisted’ both with respect to the inversion Z and the
super-affine symmetry S, and hence has the reversed Gso and orbifold projection relative
to y = 0. Thus only the fixed point at y = /2 supports a Neumann Ishibashi state (with
n = +1) in the twisted NSNS sector.

As we mentioned above, the circle theory for = +1 has a second set of fixed points
that correspond to off-diagonal matrices. They correspond in the circle theory to NSNS
sector Neumann branes, which are resolved using RR Neumann Ishibashi states. In the
super-orbifold theory, they are mapped to the family of branes (B.29). This set of branes
contains again a Dirichlet point, this time corresponding to g = iog

lios) = V2 Z —)"(2m,0)) ® |D;n = +1)x, (3.29)

m=—00

which is naturally associated to the fixed point y = w/2. Translating the circle theory
resolution, we therefore have to resolve this brane with twisted RR sector Ishibashi states.
In the twisted RR sector of the super-orbifold, the fermion has a unique ground state (the
fermions are half-integer moded), that can be either Gso-odd or Gso-even. Given our
conventions, the correspondence suggests that the fixed point y = m/2 gives a GSO-even
twisted RR ground state (so that the Dirichlet brane can be resolved by a fixed point
contribution from the ‘same’ fixed point). This then implies that the RR ground state at
y = 0 is Gso-odd. Thus we only have 1(1)-preserving Ishibashi states from the twisted RR
sector at y = 7/2, and the Ishibashi states from this sector must resolve both the Dirichlet
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Figure 3: Twisted sector branes for 7 = 41 in the super-orbifold theory.

brane for § =0 mod 7, as well as the Neumann brane for § = 7/2 mod 7. These results
are summarised in figure .

An interesting feature of this analysis is that a regular Dirichlet brane (which has only
a contribution from the NSNS sector) is resolved by a twisted sector NSNS Ishibashi state at
the fixed point y = 0, while at the other fixed point y = /2 it is resolved using a twisted
sector RR Ishibashi state. Another somewhat surprising feature is that the Neumann branes
get only resolved by twisted sector contributions from one end, namely from the fixed point
at y = w/2. These properties are probably a consequence of the somewhat unusual orbifold
that defines the super-orbifold theory.

A tale of two etas. We shall below carry out a similar analysis for the superconformal
gluing conditions with 7 = —1. Before delving into the details of this, there is an important
issue we need to explain. In the previous paragraph (i.e. for n = +1), the boundary state
with ¢ = I was identified with a Dirichlet brane sitting at the fixed point y = 0 in the super-
orbifold theory. One may then suspect that the identification between this group element
and the specific fixed point will also hold for the other gluing condition (i.e. n = —1), but
as we shall now explain, this is not correct.

In order to see this, let us consider the annulus amplitude involving the two NSNS
boundary states, one associated with g =1 for n = —1, and one with g = io3 for n = +1

At = xsn =19 =Tle 7™ g = io3;n = +1)xs - (3.30)

In the closed string channel, this amplitude belongs to the NS sector, i.e. it leads to a NSNS
character with the insertion of (—). The superconformal Ishibashi states are normalised
such that!!

i2 (G+1)?

=—1; jmmle ™ e jmm; n = —(_\i—m q2 +q 2 [U4(it) /2
R =) = n(it) <77(it)> - @3y

1The phase in front of the right-hand-side is understood as follows. The Ishibashi states |7 mm;n) are
built on an Ns SVir. primary of conformal weight A = 5°/2, coming from the decomposition of a reducible
representation of lowest weight A = m?/2 (with |m| < j). If j = |m|, the SVir primary state has even
left-moving fermion number (since it is identified with a super-ii(1) primary). For j = |m| + 1, the SVir
irreducible representation is built on the first null vector appearing at level |m| + 1/2, with (=)* = —1. By

induction we find the (—)?~™ factor in eq. ()
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Then the annulus amplitude (B.3(]) reads

Ap =30 D70 (™1 gmmle™™ e jmm; +1)
7=0m=—j
S Y 1)q§ v E (04@'75))1/2 _ <194(z't)>3/2
= ’ n(it) n(it) — \Un(it)

- (%>/ . (3.32)

Therefore we find that in the open string channel (last line) the annulus amplitude between
the brane g = I with n = —1 and the brane g = io3 with n = +1 leads to the character for
an untwisted j = 1/2 representation of the affine s1(2) algebra at level two. (From the point
of view of the free fermions, the j = 1/2 representation describes the R sector, which should
indeed appear between branes of opposite 7.) This shows that these two Dirichlet branes
sit at the same fixed point of the super-orbifold. Computing instead the amplitude for two
g = I branes with n = +1 and n = —1, one finds a twisted j = 1/2 character, showing that
these two Dirichlet branes do not sit at the same fixed point. The important conclusion of
this computation is that the roles of the two fixed points y = 0 and y = 7/2 are exchanged
when replacing n = +1 by n = —1.

Fractional branes correspondence for n = —1. With these preparations, we are
now in the position to find the correspondence for the fractional branes of the circle and
super-orbifold theories for n = —1. For n = —1, the only fixed points of the circle theory
correspond to diagonal group elements and describe Dirichlet branes. They are resolved by
odd momentum (NSNS sector) and even momentum (RR sector) Dirichlet Ishibashi states.
In the super-orbifold theory, these fixed points are mapped, via the identification (2.17),
to the group elements (B.21).

As explained above, the Dirichlet point ¢ = I corresponds for = —1 to a Dirichlet
brane sitting at the fixed point y = 7/2. According to the correspondence it is resolved
by twisted sector Dirichlet Ishibashi states from this fixed point, both in the NSNS and RR
sectors. This is in perfect agreement with the analysis of the n = +1 case: in the twisted
NS sector, there are fermionic zero modes satisfying (B.2§). If the ground state at y = 7 /2
satisfies a Neumann boundary condition to n = +1, it automatically satisfies a Dirichlet
boundary condition for n = —1, and thus the fixed point at y = 7/2 supports a Dirichlet
Ishibashi state in the twisted NSNS sector for n = —1. On the other hand, the twisted
RR sector does not have fermionic zero modes, and hence the existence of the Dirichlet
Ishibashi state at y = m/2 for n = +1 implies also that such a Dirichlet Ishibashi state
exists for n = —1.

As regards the ‘Neumann point’ ¢ = ioy of the super-orbifold theory, this is now
resolved by a twisted NSNS sector Neumann Ishibashi state from the fixed point y = 0,
together with a twisted RR sector Neumann Ishibashi state from the fixed point y = 7/2.
(The contribution of the two fixed points is therefore again asymmetric, as already before
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Figure 4: Twisted sector branes for 7 = —1 in the super-orbifold theory.

for n = +1.) The contributions of the fixed points for 7 = —1 are summarised in figure §
The fact that all of this ties in very nicely together is convincing evidence that the proposed
one-to-one correspondence between the branes of the two theories is indeed correct.

Using these identifications one can now find linear relations between the momentum
Ishibashi states of the circle theory, and the fixed point Ishibashi states of the super-orbifold
theory.'? This will allow one to write explicit expression for the fractional brane boundary
states for generic group elements (B.21)) (together with (B.22) for n = +1). The resulting
formulae are however not very illuminating, and since the structure is similar to the bosonic
case worked out in section P}, we shall not present them in detail here.

4. Conclusions and open problems

In this paper we have studied the complete boundary (D-brane) spectrum for multicritical
points where the underlying closed string theory has two equivalent, but superficially dif-
ferent, descriptions. In particular we have considered the multicritical point of the ¢ = 1
bosonic theories where there is an equivalence between a circle theory and an orbifold the-
ory. We have also considered the multicritical point of the ¢ = 1, N/ = 1 superconformal
theories where the circle theory is equivalent to the so-called super-orbifold theory. In each
case, the two different descriptions lead to a ‘canonical’ spectrum of D-branes which looks
a priori different. We have checked that in both cases the full conformal (resp. supercon-
formal) D-brane spectrum of the two descriptions however agrees. This suggests that the
equivalence of these multicritical theories also extends to the boundary sector.

In establishing this correspondence we have constructed a family of ‘fractional’ D-
branes of the orbifold (and super-orbifold) theory that interpolates between a standard
fractional Dirichlet and a standard fractional Neumann brane. Finally we have seen that
the natural starting point for the description of all superconformal N'= 1 branes at ¢ = 1
is the superaffine theory (rather than the circle theory). This is the theory that has an
affine S0(3); symmetry.

It remains an open problem to describe similar phenomena for conformal field theories
with higher central charge. However, the complete moduli space of all conformal D-branes
for such conformal field theories is not known; the description of all of these branes is likely

128trictly speaking we have so far only identified the twisted RR sector Ishibashi states from the fixed
point at yo = 7/2; the identification for the Ishibashi states coming from the other twisted sector (at yo = 0)
is however also uniquely fixed, since these Ishibashi states must be ‘orthogonal’ to the ones from yo = 7/2,

as the LHS of eqs. (2.24), ) in the bosonic theory.
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to be a complicated problem since the number of conformal Ishibashi states grows out of
control for central charges bigger than one.'® The known constructions of one theory will
then typically correspond to branes that are unfamiliar from the other point of view; it is
therefore not obvious how one should compare the brane spectra of these theories.
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A. Conventions and definitions

Pauli matrices. The Pauli matrices are defined as

01:<(1)(1)> s 02:<(Z,)_0i> s 0'3:<(1)_01> . (Al)

SU(2) matrix elements. The SU(2) matrix elements in the representation of spin j
read

min(j—m,j+m) - - - — - —
: B VG +m)IG—m)l G +m) ([ —m)!
Do) = 2 G—m—0IG +m— Ol (m—m+0)!

{=max(0,h—m)

% aj-l-fn—f(a*)j—m—fbm—m—l—f(_b*)ﬁ7 (AQ)

where the SU(2) group element g is written as g = (_§ b ) with aa* 4 bb* = 1.

_b* a*
Theta-functions. The theta-functions are defined as (¢ = exp 2in7 and z = exp 2inv)

(v, 1) =19 [ﬂ (v;7) = Z'Z(—)b”q%("Jr%)Qz"Jr% (A.3a)

neL

o0
= Qq% sin v H (1—¢"(A = 2¢™) (1 — 27 1¢™)

m=1

1 1
oy, 7) = m (vir) =Y q2Ha) et (A.3b)

neL

o0
= 2¢5 cos v H (1— g™+ 2¢™) (1 +271¢")

m=1

13Strictly speaking the relevant quantity is the effective central charge.
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) = 0| | 3m) = St = TLa =+ 1+ ) (A
m=1

nez
Valv,7) = ﬁm (i) =D (e = [ - =2 )1 =71 2)
nez m=1

(A.3d)

We use thereafter the shorthand notation ¢;(7) := 9;(0,7). The Dedekind eta-function is

1 o0
g H 1—q™ (A4)
Some useful identities are

9o(1)93(7)04(7) = 213, 94(27) = /93(7)04(7) . (A.5)

Finally the modular transformations read

9 [‘b‘] (v,7+1) = e T2y [a +Z - J (v, 7) (A.6a)
9 m (vfr, —1/r) = V/ire BT [‘Cﬂ (v, 7) . (A.6b)
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